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F° ABSTRACT

This Semiannual Technical Summary reports work in the Distributed Sensor

Networks program for the period 1 April through 30 September 1980. Prog-

,'ess r-elated to development and deployment of test-bed hardware and soft-
warc, including deployment of three test-bed nodes, is described. A com-

plete algorithm chain from raw data to aircraft locations, employing two
acoustic arrays, has been developed and demonstrated experimentally using
data collected from test-bed nodes. A strawman design for a new multiple

microprocessor test-bed node computer is presented. Also described is

progress in the design and development of a real-time network kernel for

the DSN test bed in general, and the new processor in particular.
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DISTRIBUTED SENSOR NETWORKS

I. INTRODUCTION AND SUMMARY

This Semiannual Technical Summary (SATS) for the Distributed Sensor Networks (DSN)

program reports research results for the period I April through 30 September 1980. The DSN

program is aimed at developing and extending target surveillance and tracking technology in
systems that employ multiple spatially distributed sensors and processing resources. Such a

DSN would be comprised of sensors, data bases, and processors distributed throughout an area
and interconnected by an appropriate digital-data communication system. It would serve users

who are also distributed within the area and serviced by the same communication system. Of

particular interest is the case when individual sensors cannot view the entire surveillance area

and when they can individually generate only limited information about targets ir their field of

view. The working hypothesis of the DSN program is that. through suitable netting and distrib-

uted processing, the information from many such sensors can be combined to yield effective and

serviceable surveillance systems. Surveillance and tracking or low-flying aircraft, including

cruise missiles, using sensors that individually have limited capabilities and limited fields of

view, has been selected to develop and evaluate DSN concepts in the light of a specific system

problem. The research plan iS to investigate these concepts and to develop a DSN test bed which
will make use of multiple small acoustic arrays to detect and track low-flying aircraft.

Progress in the development and deployment of the test bed at Lincoln Laboratory is reported

in Sec. II. This effort includes modifications to node designs, deployment of additional nodes,

work on providing wire communication between nodes and a monitor and control computer, prep-

arations for mobile nodes, further develooment of the real-time kernel for the nodes, and work

on developing a real-time signal-processing capability for the nodes.

The first data-acquisition node located on the Laboratory's Building L has been retrofitted

to improve performan-ce and ease of use. The physical array was reconfigured using individual

tripod mounts for the microphones. The system was modified to improve its ability to resist

outdoor conditions for long periods of time and to allow complete operation of the system from

inside. Calibration, audio-communication, and audio-recording features were added to improve

ease of operation, improve experimental control, and provide better experiment documentation.

A second node. identical to the retrofitted L node, was constructed and deployed with the array

being on the roof of Building J in the main Laboratory complex. A third array, with an exper-

imental rigid but easily configured frame holding microphones, has been deployed on the roof of

a hangar at the Lincoln Flight Facility. Communication between the Flight Facility and the main

Laboratory is provided by 9600-baud short-haul modems with unloaded lines.

A new version of the real-time kernel (DAK) has been developed. It provides for limited

access to all the memory in a node and will be the basis for all real-time processing in the nodes

for the next several months. This real-time processing includes data collection and recording

on digital tape, for which drivers and other user software must atill be converted to the now ker-

nel, and real-time signal processing which will involve a Floating Point Systems array processor

as well as the PDP-i1/34 in each node. Progress on the development of real-time software to

control and make use of the array processor as well as actual array-processor software is also

described in Sec. H.



Section III reports on data-collection activities involving known and controlled aircraft and
upon the successful development and experimental demonstration of a complete data-processing
chain from raw data through to two-site acoustic locations of aircraft. Also described are mod-

ifications and improvements to the Acoustic Data Analysis Program used for algorithm develop-

ment and experimental data processing.
Section IV reports on development of a REal-time NEtwork kernel (RENE) which is to be a

successor to DAK, and also on a strawman hardware design for multi-microcomputer node ar-

chitecture which could be used to enhance test-bed node, capabilities and would be a step toward

smaller, low-power nodes in the future. The software kernel is to be implemented for the ex-
isting PDP-ti node computers as well as for any multi-microcomputer system which might be
developed. It is a rmal-time system being specifically designed for use in a distributed multi-

computer, muti-node environment. The strawman hardware design is modular and can be used

to realize very powerful DSN nodes. It uses Motorola M68000 chips as the main processing el-
ement, and incorporates many features related to reliability, maintainability and ease of de-
bugging hardware. In order to decide how next to proceed, we are presently at a stage where
DSN requirements and the strawman design are to be reviewed in the light of commercially

available microcomputers.
Finally. miscellaneous activities including interactions with other research groups, reloca-

tion of our physical facility within the Laboratory. and conversion to Version 7 UNIX are sum-

marized in See. V.
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It1. TEST-BED DEVELOPINIENT

Progress in the development and deployment of hardware and software for the DSN test bed
is reported in Secs. A through C below- Section A addresses hardware and deploym.ent; Sec. B

- deals w~ith the real-time software kernel to support data acquisition and other real-time pro-

cc3sing; and Sec. C reports progress on the real-time signal-processing software for the de-Iployed nodes.

A. NODE IIARDWARE AND DEPLOYMENT

I- ie hardware configuration of the iLrata Acquisition System described in our previous SA rs1I has been significantly improved. In addition, twro more microphone arrays have beer constructed

and intalled on tie roofs of two other Laboratory buildings. One of the new sites is within the

main Laboratory complex, and the other is remotely located at the Lincoln Flight Facility. We

now have a total of three DSN arrays in place for data-collection experiments. The two sites at

the main Laboratory complex are completely operational. fhe third is awaiting delivery of a

tape system and final checkout and deployment of the electronic racks at the Flight Facility. Two

of the nodes contain FPS 120B array processors for future real-time signal processing. The

array processor for the third node is temporarily attached to our PDP-i/70 research support

computer for software dex clopment purposes. Options for data communications between remote

nodes and the PDP- i 1/70 which also serves as our monitor and control computer have been in-

vestigated, modems have been procured, and an initial 4-wire line with 9.6 kbits modem has

been installed between the existing remote site and the main Laboratory. Plans for mobile DSN

nodes have been formulated, and are in the process of being reviewed and finalized. Additional

details are described in the following paragraphs.

The square and rigid array that was initially installed on the roof of the Laboratory's Build-

ing L has been reconfigured into three concentric equilateral triangles with a microphone placed

= at each of the vertices. Figure lI-i shows the configuration of the new array. The triangle base

dimensions are approximately 6, 2. and 0.75 m. This new configuration was adopted to improve

the spatial resolution and aliasing properties of the array over the 20- to 180-lz band. The

larger aperture gives better resolution at the lower frequencies, while the small spacings near

the center avoid aliasing at the higher frequencies.

Separate supports are used for each microphone element of the new array. The metal tri-

pods chosen as the element supports are easy to erect and align. The use of separate supports

for each element allows easy recorfiguration as long as the array is deployed on a reasonably

fiat surface. Figure 11-2 shows the physical construction of the new tripod array- There is now

one such array located on the roof of Building L where the original data-acquisition array was

iocated and a second on the roof of Building J, also in the main Laboratory complex. The third

array on the roof of a hangar at the Lincoln Flight Facility has a different construction which is

described later in this section.

A new preamplifier protection circuit and power distribution system has been designed. The

originally deployed power supply consisted of non-rechargeable mercury batteries with individual

preamplifier protection relays for each channel. The power supply. including switches, relays,
and reset buttons, was located at the array, several hundred feet from the main electronics and
operator's position. In the new design, all controls and components - other than some connec-

tors and wires - have now been moved inside to the operator's position.
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The new preamplhfier power-supply design contains rechargeable batteries and an integral

recharging system. The batteries consist of maintenance-free, sealed, lead-acid cells which
Em

are capablo of maintaining a charge that is adequate to power an array for 4 to 6 weeks. The

recharge system built into these cells incorporates recombination of gases with a starved elec-

X trolvte system. Therefore, the batteries can be enclosed within a sealed container.

A second change in the power distribution system design involves the use of new pre-

j i amplifier protection circuits to replace the relays used in the initial design. The new circuit

S!is entirely solid state with an ad. .stable current-limiting trip point to provide maximum pro-

Stection of the microph-ne preamplihers.

A multipair shielded cable which extends from the operator's position to the outside array

is used to provide power to all channels. It is comprised of 19 individually twisted pairs, sur-

rounded y a common shield. With the power supply and all controls now inside at the opertor's

position. experiments can be conducted more conveniently and safely, independent of weather
" conditions.

Providing remote power to the array necessitated the construction of a simple preamplifier/

power-supply interface IPPI) which is to be located with the microphone array. The P13, shown

in Fig. 11-3, couples the Power cable. preamplifier cables, and individual channel signal lines at

the array. Power is distributed from the PPI to each preamplifier (located physically at each

microphone. n The output of the preamnplifiers is connected within the PPI to the proper signal

cable lines which terminate at the A/D hardware located inside at the operator's position.

Fe I-3. Preamplifier/power-supily int-erface units and calibration

)odspeaker to be located ot side at microphone arrays.

rhe existini three nodes contain zeinporary prototype versions of the new power-supply

design. The luation of the prototype power supply in the wode electronics racks is shown in

Fig. 11-4'a-.. Use -nf the prototype power supplies hias expedited node deployment a- has pro-

vided an meration i t est bed for the final design. in the future, additional nodes will be con-

struicted "s irnue PC boards to form a meore reliable and easier-to-monitor firal version of

tn ower-un-ply stem. The preseut nodes will be retrofitted with the newer design_
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i As reported in the previous SATS measures were being taken to ensure that hardware ex-

posed to the outside environment would be weatherproof. The most critical areas are the con-

nectors where the signal lines, preamplifier lines, and power cable interface. In the initial

system, general-purpose three-pin audio plugs and receptacles were used on a temporary basis

due . very long lead times for connectors better adapted to outside use. A routine inspection

of the Building L array a few weeks after deployment revealed oxidation of the audio connectors.

Figure 11-5 shows the condition of the preamplifier extension cable connectors after two months

of operation during the summer. The condition of these connectors reconfirmed the need for

the better plugs and receptacles which had already been ordered. The conver-ion process for

the first array consisted of replacing all audio connectors with envir-amentally resistant,

shielded. pressure-locking electrical connectors. Figure I-6 shows a microphone. preampli-

fier, and preamplifier cable with the new connector affixed. The connector pairs consist of

4-pin plugs, with sold-plated contacts sealed in a t-ulcanized rubber insert, mounted on the

cables, and 4-in bayoneti lock recet acles with a similar insert, mounted on the preamplifier

power interface- The two new arrays have bcen built using the- new connectors and PPI.

I _ _

Ali-crophone. preamplifier, andW preamplifier cable
wi' nvir.ranentally resis nt, shielded. pressUre-locking

ro' a ttached.

It was immedIar.?t arY an from the first few d1ata-collection experiments that Letter mis-

sion documentation - ora'or control were necessary. Also. a method of quickly and easily

confirming system in u prior to an experiment was reuied AIl these functions were

accomplished 5Y a&4=4HI owerator support hardware to the nodes. Th support hardware involves

a casseUte reCOrder. aUdio mixer, aircraft transceiver. tone marker, calibration meter. cali-

oatiof os-ilato-r, a n l-oudspear. Figure li-4la-bi SIwS the cmn--truction of the A/D hard-

ware. support eq net. PDP-It/34 processor. array proessor. tape drive. and power Supply

The operator's unsitto is ust to the left of the equipment racks. The mixer, trasceiver. and



tone marker are located in the voice communication interface. The calibration meter and oscil-

lator are located in the calibration section. The data-channel interface consists of interconnec-

tions between the calibration section ard the signal cables from the microphone preamplifiers

which are remotely located at the array. As shown in Fig. 11-7, the acoustic data flow is from

the data-channel interface, through the calibrator section, to the instrumentation amplifiers

which provide gain and anti-alias filtering through the gain-rang,,ed analog-to-digital (A/D) con-

verter and its digital interface, and to the PDP-Ii/34. With data-acquisition software running,

the PDP-ii/34 accumulates buffers of data and causes data to be stored on digital tape. When

real-time signal-processing software becomes available, the acoustic data will flow from the

PDP-1i/34 into the array processor and the reduced data from the array processor will be re-
turned to the PDP-11/34.

MULTI-CHANNEL
ANALOG DATA

FROM
MICROPHONE PREAMPLIFIERS

DATA-CHANNEL
INTERFACE

CALIBRATION
SECTION

INSTRUMENTATION
AMPLIFIERS

GAIN -RANGED
AID

A/D DIGITAL
INTERFACE

PDP-11/34

9-TRACK FPS 1200

DIGITAL TAPE ARRAY PROCESSOR

MULTI-CHANNEL ACOUSTIC TIME SERIES

POWER PEAKS IN ELEVATION-AZIMUTH-FREQUENCY SPACE

Fig. 11-7. Primary data flow in a node.

Each operator can now communicate with the pilot, and with all other node operators using

the aircraft transceivers. This provides essential communication for conducting controlled ex-

periments, and also provides for an interim multi-node synchronization mechanism for starting
- - data runs. The audio cassette recorder and audio mixer are used to make an audio tape history

- of all communications between the aircraft, the mission spotter located at the array, and all
other DSN node operators. One recording channel of the cassette is used for this purpose. In
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addition, a single audio channel of the microphone array is recorded on the other channel of the

cassette recorder. This channel is easily reviewed and analyzed to aid in interpretation of the

digital data collected during an experiment.

The calibration oscillator and gain calibration meter which are part of the equipment at thei operator's position, and a loudspeaker which is installed at tle array site as shown in Fig. II-3,

R; are used to do a quick continuity and calibration check of all channels just prior to an experi-Iment. The oscillator drives the loudspeaker with a specific calibration frequency. Each channel

is individually monitored using the gain meter to determine if the correct signal levels are being
received for the known signal level from the oscillator. Absolute calibration is occasionally

done manually by visiting each microphone with a special absolute calibrator. Immediately after

such an absolute calibration, the loudspeaker is driven with a known signal level and the received

signal let els are recorded for s-,bsequent quick calibration. The tone marker in the voice com-

munication interface circuit is controlled by the operator. When the tone marker is enabled, it

places a short tone burst on the audio tape and on a spare channel of the digital-data tape to in-

dicate a significant event. This is used to mark times when controlled experimental aircraft

pass checkpoints, and it is also used to manually provide synchronization information on data

tapes.

rhe DSN now consists of three arrays located in the vicinity of the main Laboratorj complex.

In the near future, real-time processing of a portion of the data at the nodes is planned, with

transmission of reduced measurements back to the PDP-i/70 where location and tracking will

be done. This will be the first of our real-time experiments. For the next several months, all

intercomputer communications will be via transmission over either the dial-up telephone system

or leased (unloaded) 4-wire private-line metallic circuits. To this end, two pairs of short-haul

modems and a pair of long-haul modems have been obtained. At the present time, we plan to

connect the remote PDP-11i/34 based nodes to the central PDP-I/70 via 9.6-kbaud circuits. The

link between the Lincoln Flight Facility node to the PDP-i/70 is operational. The line between

the Antenna Test Range and the PDP-1I/70 is in the process of having the inductors removed so

that it will be compatible with the short-haul modems.

We are now in the process of developing mobile DSN; test-bed nodes which can be deployed

easily. This will allow for experiments with various node configurations and for experiments at

a variety of locations. Detailed specifications for a motor vehicle that will house all electronic

equipment for a mobile DSN node have been completed. The proposed vehicle will be a relatively

heavy-duty conventional truck and cab with a custom-designed body housing. The housing will

accommodate three 6-ft equipment racks, a desk with computer control terminal, electronic test

equipment, and operating personnel.

Primary AC power for the mobile-system electronic and electrical equipment will be sup-

plied by public utility sources w en available. Otherwise, a gasoline-driven 15-kW motor gen-

erator (MG) set will be used. The MG set will be installed on a shock-mounted platform to the

rear of the body housing on-board the vehicle.

V = The nature of DSN tests requires that ambient background-noise levels at the low end of the
aud- band be suppressed to enhance detection and tracking of targets. In the mobile system,

the motor generator is a potential source of unwanted background noise. To suppress this noise,

the MG will be housed in a sound-attenuating enclosure and the sensor array will be positioned

approximately 300 m from the vehicle. If experiments indicate that generator sound levels are I
still too large, we will add batteries and an inverter to facilitate quiet operation for short periods.

A9
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To simplify the positionin, of the individual sensors of the array in the mobile systems, aM

lightweight triangular framewo. k will be used. The framework is an erector-set design, and

can be assembled or disassembled in a matter of 20 to 30 min. The frame contains adjustable

legs with swivel foot pads to _Alc.; leveling when set up on sloping or uneven surfaces. One of
these frames has been constructed and installed on the .oof of the Lincoln Flight Facility hangar
as shown in Fig. 11-8. The microphone stations are attached to the framework by "U" bolt clamps

IM and, once correctly positioned, need not be readjusted even hough the frame is disassembled

and reassembled at a.different location.

_U
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Fig. 11-8. Deployed tri-delta erector-set array at Flight Facility.

B. SINGLE-PROCESSOR REAL-TIME KERNEL

For the lest six months we have been running a Data Acquisition System (DAS) under Ver-

sion 1 of the Data Acquisition Kernel (DAK). Both DAS and DAK have been described in a previ-

ous SATS.!

We now have under development a successor to DAK called the REal-time NEtwork kernel

(RENE) as described in our last SATS. To produce RENE we split DAK into two parts: an

operating system independent part, called the Object Structured Discipline (OSD); and a part

containing communication, scheduling, and memory-mapping primitives called RENE. In the

last six months we have implemented the basic part of OSD, revised DAK to create DAK Ver-

sion 2 (or DAK2) which uses OSD, and pursued separately the design of RENE proper. DAK2

will support all test-bed experiments during the next several months while RENE is being
developed.

A
In revising DAK into DAK2 we have brought all documentation up to date, provided for access

to more PDP-11 memory, and, by virtue of OSD, provided for easier possible conversion to

o10
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other computers. In the near future, DAK2 will also provide improved communication services
between nodes and programs on the monitor and control PDP-1t/70.

In the course of updating the documentation many minor improvements were implemented

and, ai addition, as a consequence of OSD development, the part of DAKZ written in the C pro-
gramming language should r- " be able to run on other computers, such as the Motorola MC68000.
This portability of software 'mportant to us as we start development of a communication

module and a new multiple mit )processor test-bed node based upon MC68000's. We have inI fact imported an MC68000 C compiler from Steve Ward's group on the M.I.T. campus, and
successfully compiled DAKZ, but have not tested the runability of any compiled code.

DAKZ supports use of the ft:'_ 248K bytes of PDP-i/34 memory in the simplest possible
way. The first 56K is directly addressable by the processor, while the rest may only be ac-
cessed by some ;/O devices and by a Lingle kernel subroutine that copies a block of memory

from any place to any other place.

DAK2 is currently up and running, but conversion of the A/D and magnetic-tape drivers and
DAS program is not vet completed. The DAKZ communication design, reviewed immediately
below, is completed and implementation is about to begin.

Communications between the PDP-x1/34 at any node and our PDP-i/70 will be accomplished
by a single ASCII full-duplex connection with XON/XOFF flow-control protocol, using standprd

terminal interface hardware and the natural ability in DAK to time-.qhare the terminal port be-

tween several processes so that several independent DAKZ processes may send data back to the

PDP-tt/70. Binary data will be transmitted by encoding them into ASCII lines. This communi-
cations scheme, which is an enhancement of the system reported in a previous SATS, will sup-

port test-bed applications for the next several months without requiring a major implementation
effort.

The OSD mentioned previously consists of conventions and routines for passing large objects
between subroutines, controlling errors and process exceptions, allocating memory, and per-

forming basic input/output. In UNIX such a system exists at the program level, based on the

UNIX shell language and the file system, but not at the subroutine level, where a real-time sys-

tem needs it. A version of OSD existed within DAK Version 1. It now has been revised and

made into an independent system capable of running with any operating system.
In addition to basic OSD, which is now implemented and running with DAK2 and UNIX, a

number of higher-level OSD objects have been designed for use by RENE and applications pro-
grams. The higher-level objects, for which we have preliminary designs, include memory

pools, a memory allocation system, byte strings used to store and access character string:,
output streams for outputting text and graphics, input streams to provide a uniform syntax for
data and command entry, and pointer lists for possible artificial intelligence applications. We

_= plan to implement these and the other new OSD objects over the next few months as a basis for

the implementation of RENE. Since this is being done in the OSD context, these capabilities will
be available for use by DAKZ programs as well as RENE and should be easily portable to other
computers for which a C compiler is available.

C. ARRAY-PROCESSOR SOFTWARE

In May 1980, we accepted delivery of three Floating Point Systems (FPS) AP-120B array

processors. Each of these computers, capable of 12 million floating-point operations per second,

provides the computational power for real-time signal processing at a DSN node. Two of the

_3- -



processors were installed directly in DSN nodes, and the third was attached to our PDP-i/70

system running UNIX for software development. In addition to the hardware installation, several

thousand lines of software for the array processors were installed on the PDP-I/70 UNIX sys-

tem: a cross assembler, linker, debugger, diagnostic programs, etc. Much of this software

was written in Fortran, but not Fortran 77 which is now standard for Version 7 UNIX. Installa-

tion thus also required some conversion. In addition, since the DSN nodes contain no provision

for mass storage devices and will be remote from our central computing facility, downloadable
diagnostics had to be developed by the manufacturer and tested at our site.

Three software package. were designed and are under development to make use of the array

processors. The first package is the Signai Processing Systc.- (SPS; ,which runs on a PDP-11/70

with an attached array processor and is a software development package. It will also aid in non-

real-time data analysis. The second, the analysis server, uses the DAK operating system and

is targeted for real-time use in nodes. It controls data flow and real-time signal processing in

the DSN node. Lastly, the array-processor server will provide a DAK system interface to the

array processor in the test-bed nodes. The current state of these systems is described in more

detail below.

The SPS is a package for developing real-time DSN signal-processing software. SPS oper-

ates on a dual-processor system consisting of a PDP-11/70 minicomputer, running the UNIX

operating system, and a Floating Point Systems AP-IZ0B array processor.

SPS has two major applications in the DSN project. First, SPS will speed up offline pro-

cessing. Currently, the Acoustical Data Analysis Program (ADAP) (see Sec. III) runs can re-

quire several hours of PDP-1I time. These can be shortened to several minutes (near real

time) using an array processor. The plan is to eventually interface SPS-developed array-

processor software to ADAP to achieve that goal. Second, SPS permits us to experiment w'Ith

and develop new algorithms for real-time data reduction. The FPS code so developed and de-

bugged can be directly transferred to the DSN node for real-time uses. Thus, SPS provides an

environment for development of real-time node software without the need to operate in that real-

time environment from the start.

SPS currently provides for low-resolution frequency-wave-number signal analysis. It is in

a state of rapid growth with high-resolution analysis to be provided as soon as matrix inversion

software is developed for complex Hermitian matrices. The following small sample of commands

displays the nature of SPS capabilities.

Command - csdm: Forms L ross spectral density matrices from channel data

INPUT Data from channels

List of frequencies at which to form csdm's

OUTPUT Average power

Cross spectral density matrices

Command - hform: Complex Hermitian form calculator

INPUT Complex vector

Complex matrix

OUTPUT Answer [transpose (vector) * matrix * conjugate (vector)]

12



Command - peak: Power and peak calculator

INPUT Array of frequencies at which to calculate power

Array of wave numbers at which to calculate power

Array of azimuths at which to calculate power

Array of cross spectral density matrices

OUTPUT Array of power peaks

Of the above, "hform" is a relatively low-level primitive command, whereas the other two

are examples of substantially higher-level commands. The higher-level commands are com-

posed of sequences of more primitive commands which also can be used directly.

4Z The analysis server is a DAKZ software device which will reside in a DSN node and control

calculation of target parameters from raw data. It will manage the real-time data flow and sig-

nal processing within the node. It is planned to be operational by January 1981, at which time it

will implement initial algorithms which have been developed and demonstrated to work under

good signal-to-noise conditions (see Sec. 1i). The preliminary design of the initial analysis

server is now complete. Several hundred lines of C code, with documentation for the analysis

server, have been written, deskchecked and compiled, but not debugged. Following is a more

detailed exposition of the functions and operation of the analysis server and the real-time pro-

cessing it controls.
The analysis server must perform three important activities. First, it manages the flow

of data from the A-to-D server to the array-processor server. Second, it controls array-

processor execution of DSN algorithms on these data. Lastly, the analysis server communicates

with a DSN user process, accepting commands and returning power peaks corresponding to pos-

sible targets.

The analysis server will manage a dataflow of approximately 20,000 samples per second

from the A-to-D server to the array-processor server. It acquires new data by sending empty

buffers to the A-to-D server and receiving full buffers back on its return queue. Buffers are

not, in general, physically moved in this process. Headers of data buffers received from the

A-to-D server are checked for errors and the buffers are then sent, along with processing com-

mands, to the array-processor server for analysis. After the array-processor server has

accepted its commands and written the data into array-processor memory, the buffer is re-

turned to the analysis server and then back to the A-to-D server, where the cycle begins again.

Following is a sketch of a typical processing sequence controlled by the analysis server.

It is a two-phase operation. The first phase is to reformat data, take Fourier transforms, -nd

generate power spectral density matrices. The second is to do wavenumber analysis and find

power peaks. Data are received in multiplexed form in buffers holding a block of 512 samples

from each of 9 channels. Eight such buffers constitute an analysis interval, 2 s of data. The

software will accommodate changes in the number of microphones, sampling rate, block sizes,

blocks per analysis interval, etc,, but there will be restrictions imposed by available FPS and

PDP-I1/34 memory.

The first step of the first phase in the array processor is that each block must undergo con-

version from A-to-D converter format (14 bits of mantissa, 2 bits of gain) to array-processor

floating-point format (10-bit binary exponent, biased by 512, and 28-bit Zs-complement man-

tissa). Next, each channel of the block is fast Fourier transformed. From the transformed

vectors, cross spectral density matrix accumulators are updated for each frequency listed in
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array-processor memory. A full analysis interval of data (8 blocks) is processed in this way
before going on to the second phase. Average single-channel spectra may be accumulated and

used for resetting the frequency list to be used for the next analysis interval. The analysis
server will have queued all the required blocks and commands on the array-processor queue by
the beginning of the analysis interval.

The second phase of analysis takes the averaged cross spectral density matrices generated

by the first phase as its input data. At each frequency of interest, a set of complex steering
vectors will be computed and the power spectral density matrix will be inverted. The power is
then estimated by a simple Hermitian form evaluation for each elevation and azimuth of interest.

From the array of pewer values, indexed by elevation and azimuth, power peaks are found and
saved for later return to the PDP-1i host. When all frequencies have been analyzed, the peaks
are returned to the analysis server. A time-out protection mechanism ensures that the array

processor will complete its calculations before the end of the analysis interval.

The x_ ysis Merr nust also communicate with a user process in the DSN node. This user

may issue commands to open, close, start, and stop the analysis server. After receiving the

open command, for example, the analysis server m'int open the A-to-D server and the array-

processor server as well as a software clock to be used for time-out purposes. The start com-

mand causes the analysis server to send an analysis parameter object to the array-processor

server which will initialize its memory with the analysis parameters; then buffer flow must be

established, analysis begun, and peaks sent to an outpu-t stream.

The array-processor server, which is distinct from the analysis server, is the software

which will provide a DAK interface to the array processor. It will handle commands to read,

write, open, and close the array processor. It is the basic mechanism for executing commands

on the array processor. It will allow users to declare functions to be executed on the array

processor, initialize them, set parameters in them, load them, and execute them. The server
will also manage memory in the array processor, provide bootstrapping service, and handle

various exceptions and hardware interrupts.

The DAK2 array-processor server module currently consists of some 600 lines of C code

and 200 lines of documentation. The code has been deskchecked and compiled, but not debugged.
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III. ACOUSTIC EXPERIMENTS, ALGORITHMS. AND SOFTWARE

Data-collection activities and the development and experimental demonstration of a complete
processing chain from raw data to 2-node acoustic locations are reported in Sees. A and B

below. In Sec. C, additional details are presented of the alpha-beta filter which has been incor-

porated into the single-sitv azimuth tracking part of that processing chain. Section D reports
additions to and modifications of the experimental signal-processing package which is used to

aid in the development and testing of algorithms.

A. EXPERIMENTS PERFORMED

One important aspect of the DSN program is the collection of acoustic data that can be used

to test new algorithms as they are developed. These data are collected in conjunction with the
flight of an aircraft over a known course so that experimental and theoretical results can be

compared. The data consist of microphone time-series data which are recorded at one or more
nodes onto 9-track digital tapes. In addition, a 2-channel analog cassette tape is recorded at
each site. These tapes, together with a record of the aircraft flight path, are then archived in

our data library.

The 2--hannel analog tape serves two purposes. One channel is used to record the sound
at the irray using a separate microphone. The other channel is used to record the conversation
beween the node operator, the rooftop spotter, the mission controller and the pilot. These

tapes are used to heip analyze an experiment in several ways. First, the speech track is played

back to ascertain when the pilot was over certain marks on the ground. Secondly, the comments

of the spotters are used to aid in associating results with other air and surface traffic. Thirdly,
the sound channel can be listened to, or played back through a real-time spectrum analyzer to
determine what spectral components were present at any time in the environment.

The majur expcrinMents performed thus far are detailed in Table III-t. They consisted of
three helicopter flights and one flight with a fixed-wing propeller-driven T28 aircraft. These

TABLE Il1-1 M

EXPERIMENTS CONDUCTED

Range (kn) Conditions Army
Aircraft Minimum Maximum Wind Environment on luilding

Small Bell 0.5 4.0 Light Moderate noise Lt
Helicopter

Small Bell 0.5 3.8 Gusty Noisy L
Helicopter

T28 Propeller 0.6 6.0 Light Noisy L, J
Aircraft

HUI Helicopter 0.7 8.0 Gusty Moderate noise L, J

t With rectorgular army; all others used tri-delta army.
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i
experiments were conducted under differing environmental and wind-noise conditions, as noted

in the table. All data except for the first experiment were recorded using the new tri-delta ar-
rays, whose configuration is shown in Fig. II-i. Both the T28 aircraft and the UH helicopter

were recorded at two nodes simultaneously.
In order to accurately locate gru nd marks, a member of the DSN team rode along as ob -

server on the TZ8 and UHI experiments. There was an operator for the node, as well as a -

spotter on each roof near each node, and an overall mission controller. As a result, these two

experiments were very well controlled and documented, reflecting %be lessons learned from the
first two experiments. The only remaining problems are those of ensuring accurate time stamp-

ing of data and its coordination with aircraft location. These are being addressed by the planned

incorporation of accurate time standards into the nodes, and the use of radar tracking

information.

B. DEVELOPMENT OF ACOUSTIC TRACKING TECHNIQUES

During these past six months, we have successfully completed one major objective, namelyIthe demonstration of algorithms to enable two nodes equipped with acoustic sensors to cooper-
atively locate low-flying aircraft. These algorithms involve a complete processing chain fromI raw-data innuts to aircraft locations as outputs. The algorithms have been experimentally

demonstrated to work using data recordings of a T28 aircraft from two nodes. Locations and

the true track are shown in Fig. III-i. The aircraft was tracked over some 2 km of its flight I
path with an accuracy of about 100 m except in the region where geometrical dilution of preci-
sion had a large effect.

While the results were excellent in proving some of the concepts employed, they should not

be construed as being representative of the ultimate performance that can be achieved with
acoustic sensors. The process of acoustic tracking involves a number of stages such as beam-

forming, frequency-target association, azimutli tracking, location, and location tracking. Until

now, emphasis has been placed on finding a technique that would work at each stage rather than

on optimizing the performance at each stage. It is anticipated that significant improvements

in performance will be achievable once changes are made to the algorithms based upon the les- 4

sons learned so far. It is also worth noting that the general area of the Laboratory is a rela-
tively high-acoustic-noise area.

The locations of the aircraft were obtained using an extension of the algorithm described

in the prior SATS ! The algorithm produces locations given updates for an arbitrary number
of azimuth tracks from an arbitrary number of nodes. But all locations are for pairs of sensor

nodes. This algorithm builds lists of azimuth vs time for each of the azimuth tracks from each
of the nodes. New azimuth-time points are then compared with each of the lists to ascertain

where corresponding observations occur, and from these the locations are generated. To keep

memory requirements within reasonable bounds, points are removed from the lists as soon as
they are older than the longest time-difference-of-arrival between the nodes. It is expected

AV that a version of this algorithm will be run in every node of a real-time system, and its output
will be fed into a location-tracking filter.

A critical element for the successful determination of location is the generation of an
azimuth-vs-time curve for a target. This requires several processing steps to be carried out
every processing interval, which is typically I or 2 s. First, the time series from the micro-

phones are analyzed to determine the directions-of-arrival at several different sound frequencies.

16
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Fig. ll-i. Acoustic locations of T28 aircraft produced by nodes on Buildings J
and IL, Straight line shows target track; solid dots show locations. Target heard
at larger distances, but locations not calculated due to geometrical configuration.

Then, different, frequency components are associated by direction-of-arrival into target azi-

muths, which are finrally fed into target azimuth-tracking filters. These filters estimate theu

smoothed azimuth tracks which are used as input to the location process.

To obtain the direction-of-arrival of the frequency components, the ML)! beamformn

Fil

technique1 was used. The analysis was done at eight frequencies with a resolution of 4 Hz.I

Since the arrays have good response from at least 20 to 200 Hz, and the targets had line spectra

with widths less than 1 Hz in this band, our ability to detect the targets is not optimum. The

best performance was obtained when the eight frequencies were selected to be the eight largest

peaks in the average power spectrum. In general, all our initial algorithms tend to perform

best when the target of interest is the domiat noise source. The limited number of frequt icies

and resolution were fixed upon in anticipation of conversion to real-time processing within in-

dividual nodes. We wanted a first-version algorithm which would work and which we could

clearly see how to implement in the real-time nodes.

While the use of eight frequencies is suboptirnal, investigation of the best means to choose

them did disclose some interesting phenomena. By looking at analog recordings using a high-

resolution real-time spectrum analyzer, we observed that the aircraft was rich in harmonics.

We also observed that there were at least eight peaks visible in the 20- to ZOO-Hz spectra for

. most of the targets used for experimentation. However, we also observed that at any one time,

- i several of these peaks could fade or be destructively interfered with by other noise sources.
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If all frequencies cannot be examined, then it is important to track the spectral peaks and not

to rely on a small number of fixed frequencies for beamforming.

Optimum performance can probably be obtained by doing the MLM beamforming at all fre-

quencies between the 20- and Z00-Hz frequency limits with a 1-Hz or smaller frequency bin.

This must be done for all azimuth and elevation values of interest, so the computational load

required to do this is high. Also, it will exacerbate the problem of how to sort out the targets
from the expected large number of peaks. However, the possible gains in performance are

large enough that this will receive major research emphasis in the near future.
It was originally hoped that the computational load could be reduced by restricting the search

for peaks of sound pressure to the horizon. Unfortunately, the peak response on the horizon

=can occur at a very different azimuth from the true peak. An example of this can be seen inI Fig. 111-2 which shows a contour plot of power as a function of wavenumber at a fixed frequency.

In the figure. the response azimuth is represented by clockwise rotation and response elevation

by distance from the center of the circle, wit-h the outer ring representing the horizon. The
true peak of response is marked B, whereas the component on the horizon is marked by A.
We found that A moved erratically with time due to changes to the shape of the shoulders with
inter-ference. Ilowev-rr, B moved steadily with target bearing. We concluded that it was nec-

essary to compute the response at a sufficient number of azimuths and elevations to totally sam-

ple the wavenumber space.

The method used for finding the direction of each peak is a modified one-of-eight algorithm.

The oata aro the power-vs-azimuth curves, computed for a number of elevaticns, at one of the
selected frequencies, as slumn n Fig. ii-l -.f the power-vs-azimuth curves are evaluated

at the same set of azimuths. Each point has two neighbors at the same elevauon angle, and

three at each of the two neighbor elevations. The algorithm compares each point with its eight

neighbors. If a point is higher than all its neighbors, then it is deemed to be a peak. This is
simple to apply and produces good results. However, it does suffer from the problem of finding

extraneous peaks when the sample intervals in azimuth and elevation differ significantly. An

example of this is shown schematically in Fig. M1-4 where one peak would be mistakenly reported
as three. This problem was overcome by extending the comparison to enough circumferential

neighbors to equalize the radial and circumferential wavenumber extent for comparison. This

works in all but a few cases, which occurred infrequently enough to not affect the final results.

- -AZMITtI jeuu
* SAMPUa

A /N , PIMEMENT

Fig. 111-4. Schematic representation of sit- 2 1
uation in which a higher sampling rate in a
azimuth than in elevation could cause un-
modified one-of-eight peak-picking algo-
rithmn to produce false peaks.

AZi1MUTH
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Fig.UI-5. Speckle plot for 9-m& U
rs " . interval contaiing T28 flyby and
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4  a i*" "'J return flyby. Azimuths of detected
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Fig. 111-6. Theoretical acoustic azimuth vs time for T28 flyby aid return
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There would be no need to modify the one-of-eight algorithm if azimuth and elevation in-

crements were about equal and both were sufficient for sampling the power function in azimuth

and elevation. But to always sample at an equal and high-enough rate in both dimensions to

handle the worst case would be computationally very costly. We have modified the algorithm to

allow us to sample more coarsely in elevation than in azimuth, with a corresponding reduction

in computation load. We typically sample azimuth uniformly every 3'. but use no more than

eight elevation values.

Some 60 to 90 peaks of response are typically found per analysis interval, resulting from

analysis at eight frequencies and eight elevations. Each of these peaks is characterized by

azimuth, elevation, frequency, and sound-pressure leveL If the azimuth values for each of these

peaks are plotted vs time, the result is a speckle plot of the type shown in Fig. rI-5 for a 128

aircraft. Al peaks with an amplitude greater than -10 dB relative to the highest peak during

each analysis interval are plotted using a symbol whose density is a function of the relative

sound-pressure level in the analysis interval. From this figure it is possible to discern several

aircraft tracks and. in particular, that of the T8 whose theoretical acoustic azimath vs time

is shown in Fig. I1-U. The 728 flew on a straight-line course and. at a range of several kilo-

meters, reversed course and flew on a straight line in the reverse direction.

Examination of thr sneckle plot reveals that while the azimuth tracks are clearly discern-

ible to the eve. there is enough clutter to make the straightforward application of tracking al-

gorithms difficult. The next steps in our present processing sequence are to cluster and prune

the peaks.

Each source of sound can emit multiple frequencies. and we would like to associate these

peaks together in each andiv.L " -... 44- CULIS uj un UnizR 4z_ clustering tech-

niques. Figure 11--7 schematically shows peak location plotted as a function of avnuth and

Fig. 111-7. Schemntic of peak clustering Z 07
in azimuth-elevation sace. Nearby points -- x n,.CLuTERi

are clustered and replaced with an appro
priately weighted average which is also x V

asiged a rfcnce rating. K

elevation, and also sw clusters formed from peaks that are close together. In forming lus-

ters. a distancing function is used which is the weighted sum of the absolute difference in a-

muth plus the absolute difference in elevation. weighted to give more e-phasis to azimuth dif-

ferences than to those in elevation. The algorithm assigns each peak a weight eqt=l to its
. out -'pressure level multiplied by its probability of hef noran-dom. Th e ~e prowbab-l;t

is determined from average power levels and the assumption that noise power has a Rayleigh

distribution. It then finds the closest two peaks acco.-ding to the distancing function and combines

these into one cluster. The resultant cluster is located at a weighted average azimuth and el-

evation -nd is as a weight equal to the sum of its parts. The cluster is no3w used instead

of its constituent Peaks, and the algorithm is repeated until no peaks or eluste- s can be found
that are within some smecified maximum dismtce in azimuth and elevation. The resultant

clusters arce then assumed to represent targets.
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There are many low-level interfering sources of sound in the environment, and, for our

initial processing, pruning was used at two levels. First, no peak was used as input to the
clustering process which was more than 10 dB below the biggest peak in the analysis interval.

Second, only the three clusters with the highest weights were used as input to the tracking fil-

ter. This considerably reduced the processing load and made it possible to use a simple as-

sociation scheme for the tracker. The penalty paid for this pruning and the procedure used for

selecting frequencies for spatial analysis were to limit the formation of tracks to a few dominant

sound sources. Despite these limitations, it was possible to form clusters that clearly delineated

aircraft tracks for distances up to 2 km from the nodes. Figure 111-8 shows the clusters formed
for a 2-min. segment of the flight of the T28 aircraft, together with the azimuth tracks formed

from these. We expect that performance Improvements will be achieved in a number of ways,

including array processing before freqnency selection and using target handover information to

control processing.

A straightforward procedure has been used for azimuth tracking. The clusters formed in

each analysis interval are compared with the extrapolated values of azimuth for existing tracks,

as shown in Fig. 111-9. If the cluster falls within some acceptance angle range of an existing

track, then it is associated with that track, and used to update its tracking filter. If a point

falls outside an existing track, it is treated as the initial point of a new track. In the current

implementation, if a track is not updated it is terminated without coasting. Using an acceptance

angle of 10*, the a-P tracking filter, which is presented in more detail in Sec. C below, pro-
duced the tracks shown in Fig. 111-8. The data shown in the figure, plus similar results from a

second array, were input to location algorithms described previously to produce the locations

shown in Fig. III-I.

C. SINGLE-NODE AZIMUTH TRACKING FILTER

Azimuths assigned to clusters of peaks include random estimation errors. These errors

are reduced by processing the clusters with a tracking filter. The tracking filter produces tar-

get azimuth estimates based on past data points and the current data point. It essentially puts

a smooth curve through the data points.

The type of filter chosen for this is the a-P filter, which is a simplified Kalman filter that

uses a first-order motion model. The formulation given here is based on the work of Bridge-

w'ter 3 and is that used to produce the tracking results shown elsewhere in this report.

Let e be the symbol representing azimuth, and T be the analysis data interval between

V the production of groups of clusters. Then, the prediction of the current value of E and its

derivative from the prior estimates of the same quantities are

Sej - ek- 1 + Tek

and

~= ek_

where the k subscript refers to time, and the symbol A identifies the previous estimates. These

predictions, together with the azimuth Pk'" of a new cluster can be used to calculate updated
A

estimates of e and 0 as follows:

23



k + akk -0j)

~ ~+Pkpk-k
k k T

These prc,.lctions are also used for data associations as explained in conjunction with Fig. 111-9.

These estimates, which are the state of the filter, are the output of the tracking process.

They are controlled by the parameters a and p which are computed as follows:

Vk-1

a:: Dk +4

P3k- 1 + 6k-1 +
Pk --

Dk

where

k = + ck-, + 2pk-I + 6k-1 + 4

and

2

where 4, is a controlling parameter that prevents a and P from going to zero as time --.

It is given by

qT2
r

where q is the covariance of the model error, and r is the covariance of the measurement

error.-

In initial tests, q and r have been assumed constant and, hence, so has 4. The value of
4, was chosen to give a compromise between smoothing the azimuth track and losing track. If

(p is made too large, then the tracking filter output is predominated by new data points. As a
result, there is not much smoothing. If (P is made too small, new data points have little effect

and the estimated curve follows a straight line, with a consequent loss of track. A value of
0.1 was found to be a good compromise for the cases studied.

The initial conditions used for initiating the a-P filters were described in Ref. 4. That is, I
given two initial measurements p1 and p?, we initiate a filter with

A
02 =P2

- t1P2 -pI)

2 T

and parameters r, 1, P2 = 1, D2  6, and 6 = 2.

D. ACOUSTICAL DATA ANALYSIS PROGRAM (ADAP) ENHANCEMENTS

TEnhancements have been made to both the analytical and plotting capabilities of the ADAP

program which is used for algorithm development and testing. In addition, changes have been
r iade to the structure of the program to convert it to a multiple overlay program. This, in turn,
increases the memory space available for analysis, which had proved to be a limitation.
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The major analytic extension to ADAP is the generation of peaks directly from any of

the standard input-data formats. Peaks are located in azimuth and elevation, using the ex-

tended one-of-eight algorithm, and are written into "peak" files. These files have data records

with the format:
Field 0: Time
Field 1: Frequency

Field 2: Elevation
Field 3: Azimuth
Field 4: Sound Pressure Level

Field 5: Signal-to-Noise Ratio

Other analytic extensions include:

(1) Ability to individually specify channel gains.

(Z) Ability to use any selected set of input channels for analysis.

(3) Ability to specify offset time into input data at which to start a run,

and also the duration of the data to analyze.

(4) Choice of methods for choosing frequencies at which to do analyses.

Extensive additions have been made to the plotting capabilities of ADAP. The first exten-

sion is to allow multiple time series, spectra, or power-vs-azimuth curves to be plotted on a

single graph. A typical example for time series is shown in Fig. III-i0. The user can select

the number of graphs that appear on a single page, and the program will automatically produce

as many output pages as are necessary to provide the requested plots.

,. k A. g h- 6ILAAN q UA ld.L, 6AAi L U 'A - A.,U, W&- A- AL 14i- l- yI i o,-
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--_ m m-" v" 1V --v vw R" M" 1 IF I' V I fi Iq Ir -1 - V I vw r -" F-- w -,-r "I-TVFi

Fig. 111-10. Typical ADAP graphical output showing multiple time series.
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In the case of time series, the user specifies the channels for which plots are desired.

The starting time and the number of seconds of data to plot are also specified. The scale on
all traces is made the same so that they can be directly compared. 

This scale is automatically

chosen unless the user wishes to override the default and specify the maximum sound-pressure

level. The parameters of the plot are indicated on the bottom of the page along with an
80-character 

comment field which the user can Input prior to running the analysis which creates

Spectral plets are similar to waveform plots, except that the user specifies starting time
and the number of seconds over which to average the spectra of individual channels. Also, the

user can specify the minimum and maximum frequencies to be plotted.

I
Power-vs-azimuth plots are parameterized by both frequency and elevation at which the

power-vs-azimuth computation was performed. Again, the user can specify how many plots
appear on a page and whether the scale is automatic or specified. The user specifies the time

offset intb the file, and the data are plotted for the next data interval. By specifying ranges

for frequency and elevation, the user can limit the number of graphs plotted.

An alternate to the power-vs-azimuth plots is also available in the form of a wavenumber
plot, as shown in Fig. 111-2. This is a contour plot of power vs wavenumber at a single user-

specified frequency. The wavenumbers have both north-south and east-west components, with

zero wavenumber value lying at the center of the circle. Target bearings are measured by
clockwise rotations from north around the circle. Target elevations appear as a radial distance,

with targets overhead appearing at the center of the circle and those on the horizon appearing

on the outer circle. Bearing marks are given every 10 ° on the outer horizon circle. The inner
circle indicates the maximum specified elevation - in the case of Fig. 111-2 it is 72 t

The power contours are interpolated from the power vs azimuth and elevation data, and
are displayed with a user-specified decibel increment between contours. Different contour line

patterns are used to indicate uphill and downhill directions. The highest-level contours are
=solid, followed by small dots and so forth. The user specifies the time and frequency of in-

=terest, and can specify the maximum scale level or have it automatically selected. The min-
imum level is always automatically selected.

The speckle plot output, shown in Fig. 111-5, was selected as the ADAP graphical form to

use for peaks. Peaks are plotted by azimuth and time, using a symbol to indicate the strength

of the peak. Because of the limited range of symbol densities available, the symbol chosen was
based on a normalized value relative to the highest peak in the analysis interval. The highest

peaks received an "i'" and those 10 dB down from the peak are indicated by a IV, with all peaks

below this level not being plotted. The result is a plot showing the relative strength of target
peaks aggregated over all frequencies. While having some limitations due to symbol density
range, it does give a good indication as to detectable target azimuths and has proved invaluable

in interpreting experimental data.

The ADAP now includes 15,000 lines of code. We could not fit it iinto the 64K bytes of data
and 64K bytes of instruction space permitted for a single task on our PDP-11/70 computer
and still have the features we desired. Therefore. during the past several months ADAP was

restructured as a multi-program set running under the control of an executive, as shown in

-_ $ Fig. III-11. The executive module, ADAP, handles all communications with the user. It takes
T_ in commands either directly or from files, and stores the resultant parameters. When a com-

mand is given to run an analysis, the executive writes all the information into a temporary file

and passes control to the ARUN program which performs the analyses.

I
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rig. 111-11. Interrelationships of ADAP programs and files. Data file contents
a, e determined by a .xx extension to file name. Those shown are: pk) power
peaks, (. pa) maps of power in frequency - elevation - azimuth space, (.ps) spec-
tra, (. pw) waveforms, -nd (. gi) information about certain waveform files.

ARUN reads all the analysis parameters from the temporary file, including the input-data

format and the output file to be created. It then performs the specified analysis and returns

control to the ADAP executive program where the user can request to obtain plots. When this

is done, ADAP again uses a temporary file to transfer control parameters to the APLOT pro-

gram which performs the plotting of time series, spectra, and power-vs-azimuth graphs. When

wavenumber or speckle plots are requested, then the WAVEPLOT and PKPLOT programs are

run respectively.

The two major advantages of this organization are the ease of expansion to ADAP, and the

extra memory space made available for analyses. Memory space for all the arrays and matrices

needed in the analysis of experimental data is still a limitation. However. we are now able to

run with blocklengths and numbers of frequencies compatible with those to be used for real-time

processing in the array processor. Overcoming the remaining memory space limitations w-

be one of the major ADAP issues to be addressed in the upcoming year.
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IV. ADVANCED NODE ARCHITECTURE

The test-bed hardware and software described in Sec. II of this SATS have beer, designed to

provide the capability needed for initial DSN experimentation. The hardware is primarily sized

to provide for data acquisition, real-time signal processing, and basic communication capabil-
ities. We have started to investigate a new node computer architecture which can augment the

capabilities of the test-bed nodes and can serve as the basis for future development of small low-

power nodes. The Prchitecture being investigated is a multiple-microprocessor node, with
processors interconnected by high-speed packet-oriented busses.

One of the modules of this processor will interface to a radio unit which can measurc ranges

between radio units located at different nodes and can also provide DSN internode communication.

This module will support communication management in the DSN and will provide a self-location

capability by means of the node-to-node range measurements. Other processor modules will

augment signal-processing capability, provide processing power and memory needed to support

investigation of advanced DSN concept- in real time in the test bed, and support input and out-

put between the node and other attached peripheral devices.

The following sections summarize progress with the real-time network system software for

the advanced node architecture (and for the DSN test bed in general) and present an overview of

one strawman hardware design for the advanced node. Earlier work on the basic system soft-

ware (REal-time NEtwork kernel, RENE), which is being developed to run on the existing

DEC PDP-i machines in the test bed as well as the new advanced node microprocessors, was
presented in the previous SATS.4 The hardware design summarized here represents a strawman

which is being used to refine ideas and help identify critical problem areas.

A. RMAL-TIME NETWORK KERNEL (RENE)

Design of RENE has progressed, with implementation on the operating system indepen-

dent part (OSD) proceeding as reported in Sec. 11-B of this SATS. As discussed in Sec. II-B,

OSD is a major part of the RENE code and, in particular, contains memory pool managers that

form a substantial part of the interface between an application process and the RENE network

communications processes.

Two versions of a memory mapper design have been developed, but we are still not satisfied
with the part of the designs that provides for swappable memory to be shared among real-time

processes. In addition, we need to review the designs with respect to commercially available

multi-microprocessor systems with hardwired or minimally controllable memory maps.

The process scheduler in DAK has been studied with a view ts enhancing it in two ways for

use in RENE: first, making it suitable for implementation under UNIX as well as on stand-alone

computers, so tiat multi-process programs can be debugged under UNIX; and second, adding

a time-protection system, protecting the allocation of real time just as a memory-protection

system protects memory, so that processes can be slowed down when they attempt to overdrive
the computer. Time-protection systems can be of considerable value and we are now reviewing

a general approach given in Ref. Z to see if it can be adapted for use in the DSN.
Detailed work is well along on the communication subsystem design reviewed in See. IV of

. _Ref. 1. with particular emphasis on the user interface and on the interface to an underlying

communications network. In the remaining part of this section, we examine the communication

issues of network congestion and the use of datagrams as the communication interface for RENE.
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Along with reliability, throughput, and response time, congestion is a major problem facing
the designer of a distributed system. We reported on reliability in Ref. i and proposed that in

RENE reliable communication would consist of requests made from user processes to server

processes, each request would have a corresponding response, and user processes would be

responsible for retries. This meant that user processes had to keep a copy of the original re-
quest, use timeouts to force retries, and be prepared to retry upon receiving negative acknowl-

edgment messages from the network or server.
Note that many DSN application programs will not use reliable communication, but will use

nonclassical algorithms involving unreliable broadcast communication between nodes. From

the point of view of the operating system, such communication is s-mple to implement Here,

we focus upon the more difficult problems related to reliable communication within and between
nodes.

USR REQUEST A - SERVER REQu! STB UE
RESPONSE A -RESPONSE B

(b)

I hI N I K S

Fig. IV-I. Similarity of communication network congestion and
server congestion in a distributed system. (a) Server in a dis-
tributed system; (b) nod- in a communication network.

Distributed operating systems -'der from congestion that arises in the same way congestion

- arises in a network. Consider Fig. NV-1(0 in wl -h we depict a distributed operating system
with one server, two users, and two request messages and their associated -csponse messages.

In Fig. IV-i(b) we redepict these same objects after renaming them: each request message has

been identified with its associated response message, as if the two were the same message,

while the server has been renamed a "n twirk node" and the users have been renamed "hosts."

As this renaming suggests, a distributed operating system will behave with respect to congestion
like a network, with servers behaving like network nodes and susceptible to congestion in the

same way.

When a distributed operating system is built on top of a real message-passing network, it
is important to try to decouple the congestion problems of the operating system from those of
the underlying network. If this is not done, congestion in a network path can cause congestion

in a server and vice versa. One good means of decoupling the congestion seems to be what we

call the perfect-sink/memoryless-link rule. The perfect-sink rule says that the operating sys-
tem will without delay accept any message presented by the underlying network, thus behaving

like a perfect sink for messages. The memoryless-link rule says that links provided by the

underlying network htve no memory and. like wires, cannot save messages arriving at their

ends. These two rules are, of course, the same rule viewed from opposite sides of the
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network/operating system interface. RENE will be made to approximate a perfect sink as
nearly as possible.

Now consider the servers. They can take at least two different approaches to congestion
control. A magnetic-tape driver, for example, prohibits a sender from transmitting the data
before a buffer is ready for it. This is positive congestion control: L request for receiver buf-

fer space must be positively acknowledged before data can be sent. But a disk-file manager with
many users may be best off by allowing oversubscription of its receiving buffer space. If this

M is done, then some data-write requests would have to be negatively acknowledged with a try-

again-in-a-moment message. This is negative congestion control. Both techniques will be re-

quired, depending upon the specific driver and circumstances.

The impact of our reliability and congestion attitudes is to make the interface between RENE
and its underlying communication networks consist of datagrams which are messages presented

by RENE for transmission through the network and which have the following properties: there
is in general no advanced preparation for a particular message by either the network, or as far
as the network knows, by the receiver of the message; and the network does not have responsi-

bility for infallibly delivering the message.
Table IV-I lists the iorinaii on- requilred in a datagram header by the current RENE design.

Five of the items are variable size, and in each case the size has been allowed to vary in units

of 2 bytes from 0 to 30 bytes, so that the size may be encoded into 4 bits. The general meaning

and use of most of the header contents should be clear from the table. However, following are
additional comments and explanation related to "circuit" and "flags."

Throughput and response-time considerations suggest that the physical netwcrk he Partitioned
into portions we call circuits which have specified response properties. For example, a high-
performance circuit might be used to exchange datagrams between processors in a single DSN

node; another circuit might provide a guaranteed transfer rate to neighboring nodes while pro-
viding a specified maximumn delay and probability of error. Many different circuits and several

different kinds of circuits are expected to be required. Several datagrams with a common cir-
cuit may sometimes be combined to reduce the overhead of datagram headers and improve
throughput.

Flags in the datagram header are in anticipation that the underlying communication network
may provide information about some of its congestion control activities. In particular, it might

give information about datagrams deleted by the communication network for congestion control
purposes. However, it is not assumed that the network must supply such a service or that the

service, if provided, is perfect.
In the current RENE design, connections between nodes are opened with the help of a direc-

tory server which provides the source-node address, destination-node address, circuit IDs,

checksum format, and the maximum number of information bytes allowed in a datagram using
the circuits. The rest of RENE and application code need not be able to interpret the source

and destination addresses or circuit IDs in terms of network implementation or configuration.

The input to the directory server from a typical RENE program trying to open a connection Is
a character string pathname plus some access-type options (e.g., read, write, execute). Code

for creating circuits is embedded in directory servers.

B. STAWMAN HARDWARE DESIGN SUMMARY

Here we summarize a strawman design, designated Distributed Processing Unit 1981 or

DPU8I, for a packet bus interconnected multi-microcomputer system which might be the basic I
aM



TABLE IV-1

DATAGRAM HEADER CONTENTSIName Bytes the

size I 4.5 Number of information bytes in dotogrom (from 0 through 32,768), and
sizes of source, destination, circuit, ID, and sum fields.

source 0 to 30 Address of network node that is dotagram source.

destination 0 to 30 Address of network node that is dotogramn destination.

circuit 0 to 30 Identifier of network circuit whose resources the dotagram is to use.

ID 0 to 30 Unique datogram identifier. Unique far datagronis with the same
time-stamp, source node, and destination node, provided that the
lifetime of any daogram ID in the network is <30 min.

som 0 to 30 Datagram checksum or encrypted signature that verifies that datagram
has not been changed since originally created. This signature IS
verifiable by the general public, including each network node through
which the datagram passes.I

time 3.0 Time dortagram was created, in units of 1/1024 s, with 4-h ambiguity.

f lags I 0.5 'The following flogs-

IDG-CONTROL When true indicates that the iwfirmation bytes
contain a control message from the network tooa

I source or destination node about the daoagrom
identified by the time-stamp, source, destin'ation,

______~ ~ ~ ~~~~~n ID._________________

DG DESTINATION On if control messages about the dotagina should

j be sent to destination instead af sent back to source.
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computing unit in future DSN test-bed nodes. All DSN functions including self-location, cern-
munication, resource management, tracking, and signal processing are to be supported. The

architecture should yield a moderately priced node usable for research in distributed systems,

and also be a model for the development of future low-cost nodes. The architecture should not
be overly committed to any particular sensor, algorithm, or microprocessor chip. The design

should be such that we can make effective we of existing DSN processing elements, such as the
PDP-11/34ts and FPS-120B signal processors now in the DSN node. The DPU81 architecture
includes an integral signal processor, but we do not plan to develop such now and expect to use

the PPS-12OBts indefinitely. The system design should incorporate features which reduce the

difficulty of construction, hardware debugging, and maintenance.

The design given here is intended to offer a superset of the features that will actually be
implemented. The final selection of features to include will be made while finalizing the archi-

tecture and proceeding to detailed design and development during 1981.

The DPUSI design given here is not the only way to obtain a multi-microcomputer node with
the same general architecture. It is possible to build DPU81, or something like it, around ex-

isting commercial microcomputer printed-circuit boards. This might well increase cost and

power consumption as wel. as require compromising on some desired features. But it could
reduce development effort- The desirability and utility of that approach depends greatly upon

the fast-changing commercial microcomputer market. Before further detailed work on the ex-
isting design, one of our next tasks will be to review commercial offerings, which have pro-

gressed considerably in the last few months, and evaluate if we can take advantage of new

developments,

In the subeections below, we summarize existing DPU81 design documentation with emphasisI on how the microcomputers are related to each other.

1. Physical Layout

The DPUSI design calls for P 19-in. rack-mounted unit about 10y in. high capable of mount-

ing up to 32 printed-circuit boards each holding at most 150 ICs. The backplane contains a

64-line packet communication bus which connects all boards. Each board nominally consists

of a 50 IC communication bus interface nlus a 100 IC microcomouter. The microcomputer will
typically include 256K bytes of RAM and either a Motorola MC68000 general-purpose micro-

processor IC or an 8X300 i/O controller IC. The design goal is an average of 0.25 W regulated

power per IC, or with a power regulator operating at 75-percent efficiency, 50 W unregulated

power per board.
Since an MC68000 has the approximate processing power of a PDP-1t/44, though with an

inetruction set whose high-level lar-guage capability is closer to that of a VALX. the maximum-

sized DPURI has a very large amount of romputing power.. By using smaller numbers of boards,
the DPUSI may he scaled down to a lower limit of two boards: one I/O processor and one
general-purpose processor which would have a combined power consumption of 100 W. A con-

figuration which would be more appropriate for a complete DSN node might consist of 6 procrsior

boards and 5 signal-processing boards, and would have 6 times the general-purpose processing
power of our current PDP-11/34. twice the signal-processing power of our current FPS-1ZOB.

an hopefully draw only 600 W of unregulated power.

A-- It is desirable to be able to extend the microcomputers beyor-1 50 ICs, so the backplane
makes provision for 64-line short busses, called daisy ch -ned busses, connecting several
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Fig. IV-Z. Packet communication and various daisy chained busses.

adjacent boards- Each microprocessor board is the head of a daisy chained bus, which connects

this board with a set of microcomputer extension boards Ao its right isee Fig. IV-Z). The

MC6800 0 board is the head of one such 64-line daisy chained bus called the memory bus, which

can accommodate a processor extension card with a memory map, cache, and an additional

ZS6K bytes of RALM, and a memory extension card with It byte of memory. Similarly, the I

= 1/0 processor board is the head of a daisy chained bus upon which 1/0 interfaces can be con-

structed, though actually the principal idea behind using the -SX300 110 controller ts that i is so

fast in io control applications that most external devices can be interfaced to it h cables, with-

out any special-purpose hardware logic- 1/O interfaces can also be constructed for the MC68000

memor bus, but that would disrupt some of the reliability features outlined below.

Single-processor boards are also accommodated on the bus- The DPU8I design snecifles

that there be two types of signal-processor boards: an instruction element and a data element.

Each instruction element is the head of a daisy chained signal-processor instruction bus con-

aining one or more data elements. Thus, it is possible to buid Single Instruction St Mul-

tiple Data Stream (S15IMD) signal processors with varying numbers of data elements from these

two oards. A review of USD signal-processing retuirements for various sensors - acoustic.

infrared, radar - indicates that a SI MD design is appropriate. In the strawnan design the in-

-suction elements are very simple, and -t is intended that a eneral-purpose MC 8000 micro-

computer will supervise the signal-processor boards and provide bulk memory for signal pro-

cessing. with tepacket communication bus being used for czOmumictioin between this
genera'-ptnose processor and the sigra processors.

L Data Sizes and Rates
-The DPUS design asumes t-it signal p ssing wil use 1'-bit data and 64-bit parame-

ters. In the immediate future these are assumed to be fixed point, because the MCW does
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not yet support floating point. The design assumes that the signal processors in one node might
eventually be required to do up to 32 million real arithmetic operations per second, and require

packet bus communications at a rate of 4 million data words per second to sustain this rate.

For example, a SIMD signal processor with I instruction element and 8 data elements should
be able to reach the maximum arithmetic rate if the algorithms partition properly, as they do
for DSN signal processing. Given the above assumptions the packet bus throughput required
for signal processing is i6M bytes/s (4 bytes per data word). To provide for this. allow for
unanticipated growth, and provide for other interactions on the bus. we have specified a bus

rate of 3ZM bytes/s. This should be easily achievable using 32 data lines and an 8-MHz clock

rate. Note that this high speed is driven primarily by signal-processing activities. An option
to be investigated in the near future is the separation of the signal-processing traffic from more
general toterprocessor communication.

3. Reliability and Clocking

For reliability and mainterwnce reasons, it is very desirable to be able to run two identical
boards synchronously through the same states comparing their outputs and even internal signals.
There are two important applications of this. One is repairing faults during manufacture and

maintenance, and the other is isolating faults to board level under remote control in an opera-
tional system. With this in mind, the DPU8I design provides for this synchronous operation
capability.

The synchronous operation of two boards will allow the use of arbitrary application software

as -a diagnostic program and will isolate faults to the board lerel under remote control. In gen-
eral, only one of two boards running synchronously will be enabled to output packets or other

signals. For the case of packet transmission, only one computer outputs the data part of the
packet, but each computer outputs a separate checksum, so that receivers can check whether

the syn-chro-nized miicrocomputers agree -on their result. identical multi-board as well as single-

board microcomputers can be synchronized-
Gi"en s~nehront.ed boards running anpicatin software, a technician using special probes

can deter' ni Points on the board where signals disagree, and can search for the earliest point

of disagreement, thereby isolating a fault. By synchronizing microcomputers u der remote
co:- o!. faults can be isolated to microcnn-puter level in an operational system.

It i-o-e difficult to synchronize I/o microcomputers. First, most deployed DSN nodes

will ,t contain two I/O microcomputers with identical external attachments. Furmhennore.

specIal cross-connections would be required to synchronize two I/O microcomputers because

"dc- ex-ernai daa entering them are not synchronized with the system clock. The problem of
r-e t e fault'_ diagnosis for the case of 10 processors is an area requiring more s to deter-

Tuift- the best approach.
The abilr to synchronize boards requires special attention to the problem of reliability

of- th se m ntLsr clock, and to accommodating microprocessors with different speeds. The
system mas-r erk is made reliable by nroviding redundant mnaster clocks, one on each I/O
microcomputer board. These boards negotiate at system startup tine as to which shall become
the master clck. The 1/0 boards can tisconi-ci themselves from the packet com.m uication U
bus, ca-n ru- ine:ndently ard asynchronously from that bus. and can monitor that bus. These

boards also contain a small nonvolatile memory tO remember the past successes and failurcs
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of boards or 'he bus. To accommodate various-speed microprocessors, synchronized 8-, IZ-,
and 16-MHz master clocks are provided.

4. The Packet Communication Bus
The packet communication bus provides all inter -mic rocompute r communication. The data

rate of the bus was set at 32M bytes/s above. Allowing each microcomputer on the bus to trans-

mit an average of 1000 packets per second, with the designed maximum of 32 microcomputers
on one bus, gives a maximum aggregate bus rate of 32,000 packets per second.

A design objective for the packet communication bus is that i;s interface be implementable
with a modest amount of hardware. A nominal parts count of 50 ICs is the goal. For this reason,
packet buffer memories have been eliminated from the interface, and packets are to be trans-
mitted directly from the main memory of one microcomputer to the main memory of another.

The speed of large main memories is limited by existing technology to rates of about one 32-bit
word per 250-ns average (for burst transmissions at sequential locations using a memory IC

feature called page mode), or 16M bytes/s. This is half the desired bus rate. Therefore, the

DPU81 design has two separate 16-bit data busses for transmitting two independent packets at
once, each at a 16M byte rate. Thus, there are four microcomputers involved at one time in
transmitting two packets and receiving two packets. This scheme requires that the micro-

computer memories be completely co-opted by the packet bus interface when they are transmitting
or receiving packets. This is a minor problem for I/O processors which must have faster,

hent e smaller, main memories. We may possibly decide that it is better to have 3 or 4 packet

busses each with 8-bit data paths and 8M byte/s rates, rather than just 2 busses.
A block diagram of a communication bus interface is shown in Fig. IV-3. The bus actually

consists of three separate busses: a signal bus with 8-bit data, and two packet busses with
16-bit data. The signal bus is scheduled using a priority algorithm with 64 priority levels.

Special signals called packet-enable signals are used tv schedule the packet busses. Packet bus
scheduling is overlapped with transmission jf previous packets. Once a packet transmission
is ready to start, the transmission processors in the interface take over and transmit the packet.

SIGNAL CON TROL .,l "I I
I BU (4hne) I- - SIGNAL PPOCESSOR . SIGNAL MEMORY

8-BIT 9405A BIT SLICE 4K x 8 BITS
SSIGNAL DATA 1 25-ns INSTRUCTION I 25-ns CYCLE

I BUS (8,,ines) I " I I

tIFIFO

I 5ons, , Mi i

3 64 X 8 SITS

PACKET CONTROL

-7TRANSM'ISSION PROCESSORI  MAI MEMOR
/ ~16-BIT 9405A SIT SLICEFW"' ,32-BI'T WORDS|

125-ns INSTRUCTION 25O-ns BURST

Fig,!V-3. Packet communication bus interface.
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The general-purpose and I/O processors control the interface by placing programs in main
memory (not part of the interface) which are executed by the transmission processor. There
are actually 256 such programs, which are called channel programs, corresponding to 256 sep-

arate processes, called channels. One of these is used to send signals to other microcomputers,

and executes send-signal instructions. Another is activated every time a signal is received and

executes store-received-signal instructions. Other channels are activated whenever a packet-
enable signal is sent or received designating a channel which is to be executed to send or re-
ceive a packet. These channels execute programs that send or receive blocks of main memory

that comprise the packet. Packets may be discontinuous in main memory. Other channel in-

structions may be used to store packet-enable signals in main memory --Id interrupt other pro-
cessors on the main memory bus, such as the MC68000 and 8X300 processors.

Signals may also be broadcast to all processors or to one or more groups of processors.

Broadcast of signals is used to start up the bus: the bus controller interrogates the micro-
computers on the bus to see what their serial numbers and types are, and assigns virtual ad-

dresses to the microcomputers. By assigning the same virtual address to two or more micro-

computers, these can be rigged to run synchronously through the same states. Packets may

also be broadcast to more than one microcomputer, but in this case the hardware takes no re-

sponsibility for ensuring that the receiving microcomputers are not busy with other packets.
If they are, they will be unable to process the packet-enable signal which they receive.
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V. MISCELLANEOUS ACTIVITIES

A number of project accomplishments and activities which do not fit directly into a specific

larger category are very briefly summarized here.

We have continued to develop our working relationship with other research groups, including

students and members of the M. i. T. faculty who are interested in distributed problem solving.

surveillance, and information distribution. One Masters Thesist has been written, and we ex-

pect additional contributions from this relationship in the future. A number of meetings have

been held with a group involving Lincoln, M. i. T. faculty, and students interested in distributed-

decision-making problems. The group includes a cross section of people with computer science.

artificial intelligence, system theory, estimation and control theory interests. As a result ofIthese meetings we have prepared an informal memo describing a somewhat simplified DSN sur-

veillance and tracking system problem which is based upon the use of idealized azimuth-only

sensors. We have also drafted another memo which gives a more detailed model for acoustic
azimuth sensors and for two-dimensional radars. Prof. V. Lessor of the University of Massa-
chusetts, Amherst, who is also interested in distributed-decision-making problems, participated

in one of the meeting§ at M. I. T. and we are continuing discussions of issues with him.

Small amounts of acoustic data, some raw and some processed, have been given to

Prof. Jae S. Lim of M. I. T. and to DSN researchers at Stanford and Carnegie-Mellon University.

Prof. Lim is investigating two-dimensional Maximum Entropy spectral analysis. The data sent

to Stanford will be used to check out their transfer of our ADAP software from PDP-14 computers

to a VAX, and will also be available to them as input for their own algorithms. A member of the

Stanford research team visited with us for three days to gain an understanding of our signal-

processing algorithms and requirements and to obtain information related to the transfer of ADAP

and the use of the data.

We have reviewed ongoing work at the University of Southern California Information Sciences

Institute in anticipation of developing a DSN self-location capability based upon measurements of

ranges between nodes. This involved reviewing available documents, discussions with the prin-

cipals, and some familiarization with the software they have actually developed. We concluded
that their constructive approach to self-registration is a good point at which to start to develop

operational algorithms. Among the important issues which now must be considered are distrib-

uted implementation and protocols for that implementation, handling of errors including the

possibility of very large systematic errors resulting from multipath, how to handle absolute as

well as relative positions, and how to handle at least some moving units.

During this reporting period, it became necessary to physically move the office and lab-

oratory space of the DSN program within Lincoln Laboratory in order to provide adequate lab-

oratory and office space for the project. The new space is several hundred feet away from the
PDP-11/70 computer which provides most of the general computer support for the project. This

required the installation of cable and short-haul modems between the computer and the new work

areas in addition to other routine preparation of the areas.

tR. P. Hughes, "A Distributed Multiobject Tracking Algorithm for Passive Sensor Networks,"
Masters Thesis, Department of Electrical Engineering and Computer Science, M. I. T.
(June 1980).
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Also, as has been planned for some time, the software system for the PDP-11/70 was

converted from Version 6 to Version 7 UNIX during this time period. This conversion was re-

quired in order to make use of new and improved UNIX features and user-level tools as well as
to remain current with the mainstream of the UNIX community. The conversion included pro-

viding for ARPAnet service under Version 7 and, to our knowledge, we were the first Version 7

UNLX connected to the network. Other tools continue to bc converted and debugged in the new

environment as the need arises or bugs are detected.
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